在当今的人工智能时代,大型AI模型已成为获得人工智能应用程序的关键。但是,这些巨大的模型需要庞大的计算资源和存储空间,因此搭建这些模型并对它们进行交互需要强大的计算能力,这通常需要使用云计算服务。从云产品性能上来看,GPU云主机是最适合的工具之一,对于业务方或者个人开发者来讲,使用GPU云主机搭建AI大语言模型有以下优势:
•高性能计算:GPU云主机提供了高性能GPU处理器,加速模型的训练和推理;
•高性价比:灵活资源管理、可扩展性、弹性伸缩等云计算优势,根据业务或个人训练的需要,快速调整计算资源,满足模型的训练和部署需求;
(资料图片仅供参考)
•开放性:云计算的开放性让用户更容易进行资源的共享和协作,为AI模型的研究和应用提供了更广泛的合作机会;
•丰富的API和SDK:云计算厂商提供了丰富的API和SDK,使得用户能够轻松地接入云平台的各种服务和功能,进行定制化开发和集成。
在本文中,我们将以chatglm-6b为例详细介绍GPU云主机搭建AI大语言模型的过程,并使用Flask构建前端界面与该模型进行对话。
整个流程也比较简单:配置GPU云主机 → 搭建Jupyterlab开发环境 → 安装ChatGLM → 用Flask输出模型API
一、Start:配置GPU云主机GPU 云主机(GPU Cloud Virtual Machine )是提供 GPU 算力的弹性计算服务,具有超强的并行计算能力,在深度学习、科学计算、图形图像处理、视频编解码等场景被广泛使用。GPU驱动,提供大量的GPU内存和强悍的计算性能,非常适合运行深度学习应用程序。
相对于实体卡,一张售价一般都是几万左右,而GPU云主机费用门槛很低,按时计费,一小时才十几元,可以根据自己的需求调配。
•本次选取的是P40卡: https://www.jdcloud.com/cn/calculator/calHost
•系统环境:Ubuntu 20.04 64位
二、搭建Jupyterlab开发环境下载Anaconda包需要在终端里执行以下命令:
mkdir anaconda # 创建文件夹cd anaconda # 进入文件夹wget https://repo.anaconda.com/archive/Anaconda3-2023.03-Linux-x86_64.sh # 下载安装包bash Anaconda3-2023.03-Linux-x86_64.sh # 安装
也可以用清华源,速度更快:https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/Anaconda3-2023.03-Linux-x86_64.sh
接下来进行环境变量设置
cd /root/anaconda3/binvim ~/.bashrc在.bashrc下添加以下内容:#Anacondaexport PATH="/root/anaconda3/bin:$PATH"然后退出编辑source ~/.bashrcconda create -n jabari python=3.8 安装python3.8版本# 创建环境jupyter lab --generate-config# 生成配置文件Writing default config to: /root/.jupyter/jupyter_lab_config.py[root@lavm-ba6po1r9fh bin]# vim /root/.jupyter/jupyter_lab_config.py
# 编辑配置文件c.ServerApp.ip = "*" # 设置访问的IP地址c.ServerApp.open_browser = False # 不自动打开浏览器c.ServerApp.port = 6888 #(自己可以自己设置端口,这里设置了6888)# ServerApp的端口号c.MappingKernelManager.root_dir = "/root/jupyter_run" # 设置Jupyter Notebook的根文件夹c.ServerApp.allow_remote_access = True # 允许远程访问c.ServerApp.password = "" # 不设置登录密码c.ServerApp.allow_origin="*" # 允许任何来源的请求c.ServerApp.password_required = False # 不需要密码c.ServerApp.token = ""# 不设置验证token
jupyter lab --allow-root # 启动JupyterLab
之后,在本地浏览器输入"服务器ip:端口号"访问即可:
也可以安装汉化软件:
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple jupyterlab-language-pack-zh-CN
三、重点来了:开始安装ChatGLM语言模型https://huggingface.co/THUDM/chatglm-6b
ChatGLM-6B 是一个开源的、支持中英双语问答的对话语言模型,基于 General Language Model (GLM) 架构,具有 62 亿参数。结合模型量化技术,用户可以在消费级的显卡上进行本地部署(INT4 量化级别下最低只需 6GB 显存)。ChatGLM-6B 使用了和 ChatGLM 相同的技术,针对中文问答和对话进行了优化。经过约 1T 标识符的中英双语训练,辅以监督微调、反馈自助、人类反馈强化学习等技术的加持,62 亿参数的 ChatGLM-6B 已经能生成相当符合人类偏好的回答。
先安装语言依赖
pip install protobuf==3.20.0 transformers==4.27.1 icetk cpm_kernels
然后在jupyter运行代码
from transformers import AutoTokenizer, AutoModeltokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True)model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).half().cuda()response, history = model.chat(tokenizer, "你好", history=[])print(response)response, history = model.chat(tokenizer, "晚上睡不着应该怎么办", history=history)print(response)
这里会直接从huggingface.co下载
最终下载完后,再次运行,提示
这里需要安装显卡驱动同时还要安装nvidia-cuda-toolkit
NVIDIA CUDA Toolkit 提供了一个开发环境,用于创建高性能 GPU 加速应用程序。
apt install nvidia-cuda-toolkit
再次运行,已经ok了,出现模型回复内容
这里在命令行输入nvidia-smi 也看下显卡类型:
四、用Flask输出模型APIapp.py的代码如下:
from gevent import pywsgifrom flask import Flaskfrom flask_restful import Resource, Api, reqparsefrom transformers import AutoTokenizer, AutoModelfrom flask_cors import CORSapp = Flask(__name__)CORS(app, resources={r"/api/*": {"origins": "*"}})api = Api(app)tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True)model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).half().cuda()parser = reqparse.RequestParser()parser.add_argument("inputs", type=str, help="Inputs for chat")parser.add_argument("history", type=str, action="append", help="Chat history")class Chat(Resource): def post(self): args = parser.parse_args() inputs = args["inputs"] history = args["history"] or [] response, new_history = model.chat(tokenizer, inputs, history) return {"response": response, "new_history": new_history}api.add_resource(Chat, "/api/chat")if __name__ == "__main__": server = pywsgi.WSGIServer(("0.0.0.0", 80), app) server.serve_forever()
最后在Terminal 里 执行python 目录地址/app.py
客户端,开发者可以通过API来获取数据:
五、前端效果:问问五一去哪玩!你可以自定义UI效果,比如胡老师用5分钟搞定的Demo——